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Chapter 5

Relational Algebra and
Relational Calculus
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Chapter 5 - Objectives

Meaning of the term relational 

completeness.

How to form queries in relational algebra.

How to form queries in tuple relational 

calculus.

How to form queries in domain relational 

calculus.

Categories of relational DML.
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Introduction

Beside the Structural components, another 
important part of relational data model is 
the manipulation mechanism or query 
language.

Relational algebra and relational calculus 
are formal languages associated with the 
relational model.

They are used as the basis for other, higher-
level Data Manipulation Languages 
(DMLs) for relational databases.
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Introduction

Informally, relational algebra is a (high-
level) procedural language and relational 
calculus a non-procedural language.

However, formally both are equivalent to 
one another.

For every expression in the algebra, there is 
an equivalent expression in the calculus (and 
vice versa).

A language that produces a relation that 
can be derived using relational calculus is 
relationally complete.
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Relational Algebra

Relational algebra operations work on one 
or more relations to define another relation 
without changing the original relations.

Both operands and results are relations, so 
output from one operation can become 
input to another operation. 

Allows expressions to be nested, just as in 
arithmetic. This property is called closure.

Relations are closed under algebra operations.
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Relational Algebra

Five basic operations in relational algebra: 
Selection, Projection, Cartesian product, 
Union,  and Set Difference. 

These perform most of the data retrieval 
operations needed.

Also have Join, Intersection, and Division 
operations, which can be expressed in terms of 
5 basic operations.

Selection and projection are unary operations



5-7

Relational Algebra Operations
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Relational Algebra Operations
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Selection (or Restriction)

predicate (R)
Works on a single relation R and defines a 
relation that contains only those tuples (rows) of 
R that satisfy the specified condition (predicate).
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Example - Selection (or Restriction)

List all staff with a salary greater than 
£10,000.

salary > 10000 (Staff)
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Projection

col1, . . . , coln(R)
Works on a single relation R and defines a 
relation that contains a vertical subset of R, 
extracting the values of specified attributes and 
eliminating duplicates.
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Example - Projection
Produce a list of salaries for all staff, showing 
only  staffNo, fName, lName, and salary 
details.

staffNo, fName, lName, salary(Staff)
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Union

R  S
Union of two relations R and S defines a relation 
that contains all the tuples of R, or S, or both R 
and S, duplicate tuples being eliminated. 

R and S must be union-compatible – having the 
same number of attributes with each pair of 
corresponding attributes having the same 
domain.

If R and S have I and J tuples, respectively, 
union is obtained by concatenating them into 
one relation with a maximum of (I + J) tuples.



5-14

Example - Union

List all cities where there is either a branch 
office or a property for rent.

To produce union-compatible relations, we 
first use the Projection operation

city(Branch)  city(PropertyForRent)
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Set Difference

R – S
Defines a relation consisting of the tuples that 
are in relation R, but not in S. 

R and S must be union-compatible.
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Example - Set Difference

List all cities where there is a branch office 
but no properties for rent.

city(Branch) – city(PropertyForRent)
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Intersection

R  S
Defines a relation consisting of the set of all 
tuples that are in both R and S. 

R and S must be union-compatible.

Expressed using basic operations:
R  S = R – (R – S)
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Example - Intersection

List all cities where there is both a branch 
office and at least one property for rent.

city(Branch)  city(PropertyForRent)
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Cartesian product

R X S
Defines a relation that is the concatenation of 
every tuple of relation R with every tuple of 
relation S.

If R has I tuples and N attributes and S has J 
tuples and M attributes, R X S will contain  (I*J) 
tuples with (N+M) attributes.
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Example - Cartesian product
List the names and comments of all clients who have viewed 
a property for rent.

(clientNo, fName, lName(Client)) X (clientNo, propertyNo, comment 

(Viewing))
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Example - Cartesian product and 
Selection

Use selection operation to extract those tuples where 
Client.clientNo = Viewing.clientNo.

Client.clientNo = Viewing.clientNo((clientNo, fName, lName(Client)) 
(clientNo, propertyNo, comment(Viewing)))

Cartesian product and Selection can be reduced to a single 
operation called a Join.
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Join Operations

Join is a derivative of Cartesian product.

Equivalent to performing a Selection, using 
join predicate as selection formula, over 
Cartesian product of the two operand 
relations. 

One of the most difficult operations to 
implement efficiently in an RDBMS and one 
reason why RDBMSs have intrinsic 
performance problems.
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Join Operations

Various forms of join operation
Theta join

Equijoin (a particular type of Theta join)

Natural join

Outer join

Semijoin
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Theta join (-join)

R       FS 
Defines a relation that contains tuples 
satisfying the predicate F from the Cartesian 
product of R and S. 

The predicate F is of the form R.ai  S.bi 
where  may be one of the comparison 
operators (<, , >, , =, ).
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Theta join (-join)

Can rewrite Theta join using basic Selection 
and Cartesian product operations.

 

R      FS = F(R  S)

Degree of a Theta join is sum of degrees of the 
operand relations R and S. If predicate F 
contains only equality (=), the term Equijoin is 
used. 
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Example - Equijoin 

List the names and comments of all clients 
who have viewed a property for rent.
 (clientNo, fName, lName(Client))      Client.clientNo = 

Viewing.clientNo (clientNo, propertyNo, comment(Viewing))
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Natural join

R      S 
An Equijoin of the two relations R and S over all 
common attributes x. One occurrence of each 
common attribute is eliminated from the result.
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Example - Natural join

List the names and comments of all clients 

who have viewed a property for rent.

(clientNo, fName, lName(Client))      

(clientNo, propertyNo, comment(Viewing))
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Outer join

To display rows in the result that do not 
have matching values in the join column, 
use Outer join.

Natural join displays only rows with 
matching columns

R       S
(Left) outer join is natural join in which 
tuples from R that do not have matching 
values in common columns of S are also 
included in result relation – keeping every 
tuple in the left relation in the result.
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Example - Left Outer join

Produce a status report on property 
viewings.

propertyNo, street, city(PropertyForRent)       

 Viewing
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Semijoin

R     F S 
Defines a relation that contains the tuples of R that 
participate in the join of R with S.

Can rewrite Semijoin using Projection and Join:

R    F S  = A(R      F S)   

                     A: set of all attributes for R
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Example - Semijoin

List complete details of all staff who work at the 
branch in Glasgow.

Staff    Staff.branchNo=Branch.branchNo(city=‘Glasgow’(Branch))
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Division

R  S
Defines a relation over the attributes C that consists of 
set of tuples from R that match combination of every 
tuple in S.

A divisor table is used to partition a dividend table and 
produce a quotient or results table. The quotient table is 
made up of those values of one column for which a 
second column had all of the values in the divisor.

Expressed using basic operations:
 T1  C(R)

 T2  C((S X T1) – R)

 T  T1 – T2
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Example - Division

Identify all clients who have viewed all 
properties with three rooms.

 (clientNo, propertyNo(Viewing))  

(propertyNo(rooms = 3 (PropertyForRent)))



5-35

Aggregate Operations

AL(R) 
Applies aggregate function list, AL, to R to 
define a relation over the aggregate list. 

AL contains one or more (<aggregate_function>, 
<attribute>) pairs .

Main aggregate functions are: COUNT, SUM, 
AVG, MIN, and MAX.
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Example – Aggregate Operations

How many properties cost more than £350 per 
month to rent?

 R(myCount) COUNT propertyNo (σrent > 350 
(PropertyForRent)) 
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Example – Aggregate Operations

Find the minimum, maximum, and average staff 
salary

 R(myMin, myMax, myAverage) 

    MIN salary, MAX salary, Average salary (Staff) 
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Grouping Operation

GAAL(R) 
Groups tuples of R by grouping attributes, GA, 
and then applies aggregate function list, AL, to 
define a new relation. 

AL contains one or more (<aggregate_function>, 
<attribute>) pairs. 

Resulting relation contains the grouping 
attributes, GA, along with results of each of the 
aggregate functions.
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Example – Grouping Operation

Find the number of staff working in each branch 
and the sum of their salaries.

 R(branchNo, myCount, mySum)

branchNo  COUNT staffNo, SUM salary (Staff) 
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Relational Calculus

Relational calculus query specifies what is to 
be retrieved rather than how to retrieve it. 

No description of how to evaluate a query.

It takes its name from a branch of symbolic 
logic called predicate calculus.

E.g., to represent "Socrates is mortal" we write 
mortal (socrates), where mortal is a predicate 
symbol, and socrates refers to an object.

When applied to databases, relational 
calculus has two forms: tuple and domain.
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Relational Calculus

In first-order logic (or predicate), predicate is 
a truth-valued function with arguments. 

When we substitute values for the 
arguments, function yields an expression, 
called a proposition, which can be either true 
or false. 
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Relational Calculus

If predicate contains a variable ( e.g. ‘x is a 
member of staff’ or Staff(x) ), there must be a 
range for x. 

When we substitute some values of this range 
for x, proposition may be true; for other 
values, it may be false. 

We may connect predicates by the logical 
connectives ∧ (AND), ∨ (OR), and  (NOT) to 
form compound predicates.



5-43

Tuple Relational Calculus
Interested in finding tuples for which a predicate 
is true. Based on use of tuple variables. 

Tuple variable is a variable that ‘ranges over’ a 
named relation: i.e., variable whose only 
permitted values are tuples of the relation. 

To specify range (domain) of a tuple variable S 
as the Staff relation, we write: 

 Staff(S)

To find set of all tuples S such that F(S) is true:

 {S | F(S)} 

F is called a formula (well-formed formula, or wff)
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Tuple Relational Calculus - Example

To find details (all attributes) of all staff 
earning more than £10,000:

 {S | Staff(S)  S.salary > 10000}

To find a particular attribute, such as 
salary, write:

 {S.salary | Staff(S)  S.salary > 10000}
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Tuple Relational Calculus

Can use two quantifiers to tell how many 
instances the predicate applies to:

Existential quantifier  (‘there exists’) 

Universal quantifier  (‘for all’) 

Tuple variables qualified by  or  are called 
bound variables, otherwise called free 
variables.
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Tuple Relational Calculus 

Existential quantifier is used in formulae that 
must be true for at least one instance, such as:

 Staff(S)  (B)(Branch(B)  

 (B.branchNo = S.branchNo)  B.city = ‘London’)

Means ‘There exists a Branch tuple with same 
branchNo as the branchNo of the current Staff 
tuple, S, and is located in London’. 
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Tuple Relational Calculus

Universal quantifier is used in statements 
about every instance, such as:

 (B) (B.city  ‘Paris’)

Means ‘For all Branch tuples, the address is 
not in Paris’. 
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Tuple Relational Calculus

Can apply a generalization of De Morgan’s 
laws to existential and universal quantifiers.

(B) (B.city  ‘Paris’) can also be written as 
~(B) (B.city = ‘Paris’) which means ‘There 
are no branches with an address in Paris’.
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Tuple Relational Calculus

Formulae should be unambiguous and make 
sense. 

An expression in the tuple relational calculus 
has the following general form:

where S1, S2, … Sn … Sm are tuple variables; 
each ai is an attribute of the relation over 
which Si ranges; and F is a formula.



5-50

Tuple Relational Calculus

A (well-formed) formula is made out of one or 
more atoms having one of the following forms:

R(Si), -- Si is a tuple variable and R is a relation

Si.a1  Sj.a2   --  a1, a2: attributes of R 

Si.a1  c          --  : comparison operator, 

             c: a value of a1 

Can recursively build up formulae from atoms:
An atom is a formula

If F1 and F2 are formulae, so are their conjunction, 
F1  F2; disjunction, F1  F2; and negation, ~F1

If F is a formula with free variable X, then (X)(F) 
and (X)(F) are also formulae.
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Example - Tuple Relational Calculus

List the names of all managers who earn 
more than £25,000.

{S.fName, S.lName | Staff(S)  

      S.position = ‘Manager’  S.salary > 25000}

List the staff who manage properties for 
rent in Glasgow.

{S | Staff(S)  (P) (PropertyForRent(P)  
(P.staffNo = S.staffNo)  P.city = ‘Glasgow’)}
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Example - Tuple Relational Calculus

List the names of staff who currently do not 
manage any properties.

{S.fName, S.lName | Staff(S)  (~(P) 
(PropertyForRent(P)(S.staffNo = P.staffNo)))}

Or, using DeMorgan’s laws:

{S.fName, S.lName | Staff(S)  ((P) 
(~PropertyForRent(P)  

     ~(S.staffNo = P.staffNo)))}
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Example - Tuple Relational Calculus

List the names of clients who have viewed a      
property for rent in Glasgow.

{C.fName, C.lName | Client(C)  ((V)(P) 

  (Viewing(V)  PropertyForRent(P) 

  (C.clientNo = V.clientNo)  

  (V.propertyNo=P.propertyNo) 

 P.city =‘Glasgow’))}
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Example - Tuple Relational Calculus

List all the cities where there is a branch 
office but no properties for rent.

{B.city | Branch(B) ∧ (~(∃P) (PropertyForRent(P) 
∧ (B.city = P.city)))}}

List all the cities where there is both a 
branch office and at least one property for 
rent.

{B.city | Branch(B) ∧ ((∃P) (PropertyForRent(P) 
∧ (B.city = P.city)))}
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Safety of Expressions

Expressions can generate an infinite set. 
For example:

 {S | ~Staff(S)}

To avoid this, add restriction that all values 
that appear in the result must be values from 
the domain of the expression. 

An expression is safe if the above is true.

In this example, the domain of the 
expression is the set of all values appearing 
in the Staff relation.
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Domain Relational Calculus

Uses variables that take values from domains 
of attributes instead of tuples of relations. 

If F(d1, d2, . . . , dn) stands for a formula 
composed of atoms and d1, d2, . . . , dn 
represent domain variables, then:

 {d1, d2, . . . , dn | F(d1, d2, . . . , dn)}

is a general domain relational calculus 
expression.
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Example - Domain Relational Calculus

Find the names of all managers who earn 
more than £25,000.

 {fN, lN | (sN, posn, sex, DOB, sal, bN) 

        (Staff (sN, fN, lN, posn, sex, DOB, sal, bN) 

         posn = ‘Manager’  sal > 25000)}
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Example - Domain Relational Calculus

List the staff who manage properties for 
rent in Glasgow.
   

{sN, fN, lN, posn, sex, DOB, sal, bN | 

(sN1,cty)(Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 

 PropertyForRent(pN, st, cty, pc, typ, rms, 

   rnt, oN, sN1, bN1)  

 (sN=sN1)  cty=‘Glasgow’)}
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Example - Domain Relational Calculus

List the names of staff who currently do 
not manage any properties for rent.
   

{fN, lN | (sN) 

  (Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 

  (~(sN1) (PropertyForRent(pN, st, cty, pc, typ, 

                   rms, rnt, oN, sN1, bN1)  (sN=sN1))))}
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Example - Domain Relational Calculus

List the names of clients who have 
viewed a property for rent in Glasgow.
   

{fN, lN | (cN, cN1, pN, pN1, cty) 

  (Client(cN, fN, lN,tel, pT, mR) 

  Viewing(cN1, pN1, dt, cmt) 

   PropertyForRent(pN, st, cty, pc, typ, 

                   rms, rnt,oN, sN, bN)  

   (cN = cN1)  (pN = pN1)  cty = ‘Glasgow’)}
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Example - Domain Relational Calculus

List all cities where there is either a branch 
office or a property for rent.

{cty | (Branch(bN, st, cty, pc)    
PropertyForRent(pN, st1, cty, pc1, typ, rms, rnt, 
oN, sN, bN1))}

List all the cities where there is a branch 
office but no properties for rent.

{cty | (Branch(bN, st, cty, pc)                    
(~(cty1) PropertyForRent(pN, st1, cty, pc1, typ, 
rms, rnt, oN, sN, bN1)  (cty=cty1))))}   
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Example - Domain Relational Calculus

List all the cities where there is a branch 
office but no properties for rent.

{cty | (Branch(bN, st, cty, pc)                                            
(cty1) PropertyForRent(pN, st1, cty, pc1, typ, 
rms, rnt, oN, sN, bN1)  (cty=cty1)))}   
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Domain Relational Calculus

When restricted to safe expressions, 
domain relational calculus is equivalent to 
tuple relational calculus restricted to safe 
expressions, which is equivalent to 
relational algebra. 

This means every relational algebra 
expression has an equivalent relational 
calculus expression, and vice versa.



5-64

Other Languages

Transform-oriented languages are non-
procedural languages that use relations to 
transform input data into required outputs 
(e.g. SQL).

Graphical languages provide the user with a 
picture of the structure of the relation. User 
fills in an example of what is wanted, and the 
system returns the required data in that 
format (e.g. QBE).
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Other Languages

4GLs can create complete customized 
application using limited set of commands 
in a user-friendly, often menu-driven 
environment (e.g. SQL, QBE).

Some systems accept a form of natural 
language, a restricted version of natural 
English, sometimes called a 5GL, although 
this development is still at an early stage.


	Slide 1: Chapter 5
	Slide 2: Chapter 5 - Objectives
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Relational Algebra
	Slide 6: Relational Algebra
	Slide 7: Relational Algebra Operations
	Slide 8: Relational Algebra Operations
	Slide 9: Selection (or Restriction)
	Slide 10: Example - Selection (or Restriction)
	Slide 11: Projection
	Slide 12: Example - Projection
	Slide 13: Union
	Slide 14: Example - Union
	Slide 15: Set Difference
	Slide 16: Example - Set Difference
	Slide 17: Intersection
	Slide 18: Example - Intersection
	Slide 19: Cartesian product
	Slide 20: Example - Cartesian product
	Slide 21: Example - Cartesian product and Selection
	Slide 22: Join Operations
	Slide 23: Join Operations
	Slide 24: Theta join (-join)
	Slide 25: Theta join (-join)
	Slide 26: Example - Equijoin 
	Slide 27: Natural join
	Slide 28: Example - Natural join
	Slide 29: Outer join
	Slide 30: Example - Left Outer join
	Slide 31: Semijoin
	Slide 32: Example - Semijoin
	Slide 33: Division
	Slide 34: Example - Division
	Slide 35: Aggregate Operations
	Slide 36: Example – Aggregate Operations
	Slide 37: Example – Aggregate Operations
	Slide 38: Grouping Operation
	Slide 39: Example – Grouping Operation
	Slide 40: Relational Calculus
	Slide 41: Relational Calculus
	Slide 42: Relational Calculus
	Slide 43: Tuple Relational Calculus
	Slide 44: Tuple Relational Calculus - Example
	Slide 45: Tuple Relational Calculus
	Slide 46: Tuple Relational Calculus 
	Slide 47: Tuple Relational Calculus
	Slide 48: Tuple Relational Calculus
	Slide 49: Tuple Relational Calculus
	Slide 50: Tuple Relational Calculus
	Slide 51: Example - Tuple Relational Calculus
	Slide 52: Example - Tuple Relational Calculus
	Slide 53: Example - Tuple Relational Calculus
	Slide 54: Example - Tuple Relational Calculus
	Slide 55: Safety of Expressions
	Slide 56: Domain Relational Calculus
	Slide 57: Example - Domain Relational Calculus
	Slide 58: Example - Domain Relational Calculus
	Slide 59: Example - Domain Relational Calculus
	Slide 60: Example - Domain Relational Calculus
	Slide 61: Example - Domain Relational Calculus
	Slide 62: Example - Domain Relational Calculus
	Slide 63: Domain Relational Calculus
	Slide 64: Other Languages
	Slide 65: Other Languages

